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The oestrogen pathway underlies the
evolution of exaggerated male cranial
shapes in Anolis lizards

Thomas J. Sanger1,†, Susan M. Seav1, Masayoshi Tokita1, R. Brian Langerhans3,
Lela M. Ross1, Jonathan B. Losos1,2 and Arhat Abzhanov1

1Department of Organismic and Evolutionary Biology, and 2Museum of Comparative Zoology,
Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
3Department of Biological Sciences and W. M. Keck Center for Behavioral Biology, North Carolina State
University, Campus Box 7617, Raleigh, NC 27695, USA

Sexual dimorphisms vary widely among species. This variation must arise

through sex-specific evolutionary modifications to developmental processes.

Anolis lizards vary extensively in their expression of cranial dimorphism. Com-

pared with other Anolis species, members of the carolinensis clade have evolved

relatively high levels of cranial dimorphism; males of this clade have excep-

tionally long faces relative to conspecific females. Developmentally, this

facial length dimorphism arises through an evolutionarily novel, clade-specific

strategy. Our analyses herein reveal that sex-specific regulation of the oestro-

gen pathway underlies evolution of this exaggerated male phenotype, rather

than the androgen or insulin growth factor pathways that have long been con-

sidered the primary regulators of male-biased dimorphism among vertebrates.

Our results suggest greater intricacy in the genetic mechanisms that underlie

sexual dimorphisms than previously appreciated.
1. Introduction
Sexual dimorphisms among animals come in many different forms [1]. Differ-

ences in the primary reproductive organs are necessary for sexual reproduction.

Secondary sexual variation in weapons (e.g. horns, antlers and tusks) and dif-

ferences in body size are often exaggerated in species that exhibit substantial

male–male competition [2,3]. Many species also exhibit colour or acoustic

dimorphisms, whereby males show off brightly coloured ornaments or elaborate

songs to attract females [4,5]. Furthermore, males and females can differ signifi-

cantly in their body proportions, which can, in turn, have important ecological

implications for the sexes [6,7]. The distinct forms of sexual selection—whether

intrasexual combat, intersexual resource competition or intersexual choice—

that shape evolutionary patterns of sexual diversity have been widely studied

[8–12]. However, the developmental mechanisms by which these diverse

patterns arise are less well understood, particularly among vertebrates [13].

Most secondary sexual characteristics in vertebrates develop after hatching/

birth through tissue-specific changes in trait growth. While body size dimorphism

is regulated by differences in circulating hormone levels [11,14,15], localized

differences in growth are regulated by sex- and tissue-specific levels of hormonal

receptors that translate into downstream changes in signalling and patterning

molecules. Therefore, to understand anatomically mosaic patterns of sexual diver-

sity, we must more thoroughly examine evolutionary changes in hormonal

receptor levels in distinct target tissues, as it is the receptors that moderate the

tissue-specific response to globally circulating signals.

Two distinct molecular pathways have been consistently found to regulate the

development of male-biased dimorphism. Differential expression of the androgen

pathway (i.e. testosterone and its derivatives) underlies the development of exag-

gerated male traits in many vertebrate lineages, including the lion’s mane [16],

swordtail swords [17], and dimorphism in body size and secondary sexual traits
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Figure 1. The evolution and development of craniofacial dimorphism in Anolis lizards. (a) Many Anolis species, such as Anolis cristatellus and Anolis sagrei, exhibit
considerable size dimorphism, but low to moderate levels of shape dimorphism. Anolis cristatellus and A. sagrei have average facial length to skull width ratios of
1.02 between the sexes (male to female). The carolinensis clade of anoles evolved extreme shape dimorphism as males evolved extraordinarily long faces relative to
the conspecific females. The carolinensis clade species Anolis maynardi represents one of the most dimorphic anole species in regard to facial length, obtaining
average facial length to skull width ratios of 1.25. (b) Calcein – alizarin (green fluorescence, red fluorescence, respectively) pulse labelling reveals that facial
elongation occurs throughout the adult face but is greatest at the nasal (NA) – frontal (FR) – premaxilla (PM) suture. Staining of a sagittal cross section of the
elongating anole face (c) also reveals that anoles lack a discrete, morphologically defined growth region in their nasal cartilage (NC) as there is in postnatal mam-
malian nasal cartilage. (d ) Proliferation in the nasal cartilage is not localized but is instead found throughout the nasal cartilage as indicated by EdU positive cell
nuclei (green). (e) Comparison of the growth rates of the premaxilla (* in (b)) between males and females reveals that males elongate their faces at nearly twice the
rate as females, but still only reach maximum elongation rates of approximately 9 mm d21.
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in lizards [11,15]. Alternatively, the insulin-like growth factor

(IGF) pathway is thought to produce an honest signal of male

condition owing to its sensitivity to nutritional condition,

such as in the development of exaggerated rhinoceros beetle

horns [18], deer antlers [19] and avian size dimorphism [20].

Caribbean Anolis lizards, or anoles, represent a textbook

example of adaptive phenotypic diversification [21]. Anoles

also vary extensively in the pattern and magnitude of

sexual dimorphism [7,10,22] particularly in their head dimen-

sions (figure 1a [23]). Ancestrally, anoles possessed skulls of

moderate proportion and low levels of sexual dimorphism,

later diverging along multiple cranial dimensions during

their adaptive diversification [23,24]. Several lineages of
anoles have evolved pronounced levels of cranial dimorph-

ism through male-specific changes in facial length. Facial

length dimorphism arises through two distinct developmen-

tal strategies: a mode of development whereby males and

females diverge shortly after hatching, which is ancestral to

Anolis, or a differing strategy in which males and females

diverge late, following sexual maturity (electronic sup-

plementary material, figure S1; [23]). A single clade, the

carolinensis clade, uses this pattern of late divergence with

males and females not reaching their highest levels of diver-

gence until 1–2 years after sexual maturity. We wanted to

investigate whether this novel and dramatic phenotype—

the elongated face in carolinensis clade males following

http://rspb.royalsocietypublishing.org/
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sexual maturity–could also be explained in terms of a novel

molecular mechanism, powerful enough to modify the con-

straints of a long-established ancestral pattern. More

specifically, we tested the hypothesis that modifications to

the androgen or IGF pathways underlie the emergence of

exaggerated dimorphism in the carolinensis clade of anoles.
ypublishing.org
Proc.R.Soc.B

281:20140329
2. Material and methods
Details of our experimental methods are described in the electronic

supplementary materials. An overview of our methodology is

described below.

(a) Species selection and morphological measurements
We compared cranial and post-cranial levels of sexual dimorphism

for 30 Anolis species using a combination of linear and geometric

morphometrics [25]. Sexual dimorphism in head shape was calcu-

lated using geometric morphometric analysis following Sanger

et al. [23]. We calculated post-cranial measurements of dimorphism

from: (i) a set of five linear measurements (snout to vent length,

hindlimb length, forelimb length, pectoral width, and pelvic

width), and (ii) by counting the number of foot and hand lamellae.

All variables were log transformed and size corrected prior to sub-

sequent analysis. We used principal component (PC) analysis to

extract the primary axes of shape variation from the morphometric

data. Following Sanger et al. [23], we then calculated sexual

dimorphism for both cranial and post-cranial datasets as the Eucli-

dean distance between males and females of each species taking

into account all significant PC axes.

(b) Proliferation assay, histology and pulse labelling
Among amniotes, developmental mechanisms of facial elongation

at the cellular and molecular levels have only been previously

examined in the laboratory mouse, Mus musculus [26]. To obtain

a better understanding of the mechanisms of facial elongation in

Anolis, we examined patterns of facial growth, histology of the

nasal cartilage and patterns of proliferation and hypertrophy in

the emerging model species, Anolis carolinensis. To assess ossifica-

tion patterns associated within the elongating anole face, we

administered calcein (green fluorescence) 30 days prior to sacrifice

followed by alizarin red complexone (red fluorescence) 24 h prior

to sacrifice. The distance between green and red labels, therefore,

represents the amount of growth that occurred for each skeletal

element between pulses. We compared facial elongation rates

between adult male and adult female green anoles using a

two-tailed t-test on growth of the premaxilla (figure 1b).

(c) Cloning and in situ hybridization
To prepare riboprobes for in situ hybridization (ISH), we cloned

500–1000 base pair fragments of the receptors for the five major

hormonal pathways from embryonic A. carolinensis cDNA:

androgen (ar), oestrogen (era and erb), IGF (igfr1), growth

hormone (ghr) and parathyroid hormone (pth1r). We perfor-

med ISH on 12 mm cryo-sections using digoxigenin-labelled

riboprobes following Abzhanov [27].

(d) Tissue collection and quantitative real-time PCR
To understand the relative significance of the different regulatory

pathways in facial elongation, we compared expression levels of

hormonal receptors between males and females for representative

species possessing the ancestral or derived developmental strat-

egies: two non-carolinensis species, Anolis cristatellus and Anolis
sagrei, and a species from the carolinensis clade, the green anole,

A. carolinensis. Of the species within the carolinensis clade,
A. carolinensis was chosen, in part, because of its growing genomic

resources [28]. Anolis sagrei and A. cristatellus have independently

converged on the short-faced morphology [24] and relatively low

levels of facial length dimorphism [23]. We prepared cDNA

libraries from the growing facial skeleton of the three anole species

at the juvenile, subadult and adult stages to fully capture time

periods when sexual differentiation is occurring in each develop-

mental strategy (electronic supplementary material, figure S2).

We compared relative gene expression between the sexes and

between stages using real-time PCR. Gene expression levels were

assayed using an Eppendorf Mastercycler using SYBR green with

40 cycles of amplification. Gene expression was assayed in tri-

plicate for each sample and normalized for gapdh and b-actin.

Finally, we analysed the expression data using the comparative

CT method [29].
3. Results and discussion
(a) Mosaic patterns of dimorphism
To understand whether the levels of dimorphism are body-

wide, suggesting a globally acting regulatory mechanism, or

cranial-specific, suggesting a locally acting mechanism, we

compared cranial and post-cranial levels of dimorphism. Our

analyses reveal that levels of cranial and post-cranial dimorph-

ism are only weakly correlated among anoles illustrating a

mosaic pattern of secondary sexual trait evolution during

anole diversification (electronic supplementary material,

figure S2; r2 ¼ 0.23, phylogenetic regression p ¼ 0.008). Further

details of the morphometric analyses are presented in the

electronic supplementary material, tables S1–S3.

(b) Mechanisms of facial elongation
The developmental mechanisms of facial elongation in Anolis
are distinct from those previously described in the laboratory

mouse model species, M. musculus. In the laboratory mouse,

postnatal facial elongation is localized to the region of the

nasal–frontal suture [26]. In this region, facial outgrowth is

driven by an underlying growth plate in the nasal septum com-

prised organized proliferative and hypertrophic chondrocytes

[26]. By contrast, facial elongation in Anolis is not localized

and the underlying nasal cartilage lacks an organized growth

plate (figure 1b,c; electronic supplementary material, figure

S3). There is also no evidence of hypertrophic chondrocytes,

as identified using ISH for Collagen X (electronic supplemen-

tary material, figure S4), and proliferative cells are distributed

throughout the nasal cartilage (figure 1d). Within sexually

mature A. carolinensis, the sum of chondrocyte proliferation in

the nasal cartilage yields an elongation rate in males that is

approximately twice as fast as that observed in females

(figure 1e; two-tailed t-test p , 0.001). The developmental

differences observed between A. carolinensis and Mus may

reflect differences in the organization of skull between anoles

and mice (e.g. skeletal arrangement, growth rates, etc.) or fun-

damental evolutionary differences in the mechanisms of

skeletal development between the two clades. Further research

into the mechanisms of amniote skeletal growth is needed to

more thoroughly resolve these alternatives.

Despite lack of an organized cellular growth zone, recep-

tors for the five major hormonal signalling pathways are

expressed in relatively restricted, yet overlapping domains

of the nasal cartilage anterior to the nasal–frontal–premaxilla

suture region (figure 2).

http://rspb.royalsocietypublishing.org/
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(c) Sex-specific gene expression of hormonal receptors
Our analysis revealed that neither ar nor igfr1 could be directly

responsible for the regulation of facial length dimorphism

observed in Anolis lizards, as they are not differentially

expressed between males and females at any stage (figure 3a;

electronic supplementary material, table S4). Instead, our

analysis found large differences in expression of an oestrogen

receptor, erb, which was specific to the subadult and adult

stages of A. carolinensis when facial length dimorphism is

developing. Such differential expression of erb, or any other

hormonal receptor studied, was not found at any stage in

A. sagrei or A. cristatellus (figure 3b,c). Furthermore, adult

long bone epiphyses do not exhibit sex-specific differences

in expression of these hormonal receptors, indicating the

observed difference in erb is not a systemic difference found

throughout the developing skeletons of male and female

green anoles (electronic supplementary material, table S5).

The time-, tissue- and species-specific nature of erb expression

suggests that the oestrogen pathway may be the hormonal

pathway underlying the evolution of male-biased dimorphism

in the carolinensis anoles.

The skeleton is an endocrine organ that locally regulates

the effects of the sex steroid and IGF pathways [30,31]. Differ-

ences in regulation of hormonal pathways in skeletal tissues

can, therefore, also result from sex-specific expression of

accessory molecules that are required for signalling down-

stream of the hormonal receptors. To further test whether

such changes related to the androgen or IGF pathways

could be responsible for the evolution of pronounced

dimorphism in the carolinensis anoles, we screened the rela-

tive expression levels of metabolic enzymes responsible for

metabolizing steroid hormones in the target tissues and of

nuclear co-activators needed to produce active transcriptional

complexes in the nucleus. We found that neither the meta-

bolic enzymes responsible for locally processing androgens

and oestrogens, 5a reductase and aromatase, respectively,

nor the steroid nuclear co-activators, src1 and cbp, show

differential expression throughout adulthood despite minor

variation in expression during the period of sexual maturation

(electronic supplementary material, table S7). Likewise, the IGF

accessory molecules, igfbp5 and foxo1, which help regulate

insulin sensitivity in developing skeletal tissues [32,33], also
show no consistent signature of differential expression in the

elongating facial tissues (electronic supplementary material,

table S6). These observations further demonstrate that the

androgen and IGF pathways are probably not involved in regu-

lation of the differential facial elongation through molecules

downstream of the hormonal receptors.

The effects of oestrogen on lizard skeletal growth have not

previously been examined, but in mammals precise temporal

regulation of the oestrogen pathway is critical for proper

longitudinal and cortical bone growth in both males and

females [34,35]. erb, in particular, mediates growth plate

fusion in young adult female mice, effectively eliminating

long bone elongation [36]. To better understand the temporal

dynamics of hormone receptor regulation in annoles, we

compared expression levels for hormone receptors between

juvenile and adult stages. In all three species examined,

most hormone receptors show a temporal decrease in

expression or similar expression levels over ontogeny, consist-

ent with decreasing rates of growth following sexual maturity

(electronic supplementary material, table S7). But only in

A. carolinensis does erb exhibit different temporal patterns

between the sexes, being temporally upregulated in females

and temporally downregulated in males. Therefore, we

hypothesize that increased erb in females at the time of

sexual maturity reduces their rate of facial elongation relative

to males, resulting in the male-biased dimorphism present in

carolinensis species.

(d) Sex-specific gene expression of signalling
and skeletogenic molecules

To regulate the growth of a skeletal trait, hormonal receptors

must activate a downstream cascade of signalling molecules

and skeletogenic transcriptional factors. To elucidate some

of the potential downstream targets of oestrogen signalling

in the face, we surveyed relative expression levels in a

panel of genes known to be involved with facial morphogen-

esis and skeletal growth in the three Anolis species. Four of six

signalling and patterning molecules measured—bmp4, bmp2,

msx2 and ihh—exhibited differences in expression levels

between male and female A. carolinensis (table 1). While

these differences are relatively subtle, ranging from only
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length dimorphism arise through the combination of many relatively small differences in receptor levels, through differential expression of the circulating molecules or
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1.4–1.7-fold, they are not found in either A. sagrei or

A. cristatellus. The differential expression of these signalling

molecules correlates with downstream effects on genes

associated with skeletogenesis; both spp1 and col II exhibit

an approximately twofold relative increase in expression in

male A. carolinensis, consistent with their elevated rate of

male facial elongation (table 2). These expression differences

are also specific to A. carolinensis and are not found in the

other species examined.
(e) Experimental summary
Our analyses illustrate that extreme male-biased facial length

dimorphism in the carolinensis clade of anoles has evolved

through regulatory changes that resulted in novel sex- and

clade-specific expression of the oestrogen pathway gene

network (figure 4). More specifically, within developing

A. carolinensis males, relatively low levels of erb responding

to relatively low levels of circulating oestradiol lead to a

cascade of molecular signalling events, which in turn lead to

http://rspb.royalsocietypublishing.org/
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Table 1. Differential expression of signalling and patterning molecules between adult males and females of three anole species. (Though the precise function of
these molecules is not yet known in anoles, note that only in A. carolinensis are these molecules differentially expressed, consistent with the observed
differential rates of facial elongation. Significant results are highlighted in italics.)

signalling and patterning molecules

A. carolinensis (5m/6f ) A. sagrei (4m/4f ) A. cristatellus (4m/4f )

gene fold change p-value fold change p-value fold change p-value

bmp4 1.6F 0.010 1.0M 0.838 1.2M 0.643

mbp2 1.7M 0.001 1.2F 0.315 1.2M 0.420

msx2 1.6M 0.037 1.1F 0.498 1.3M 0.600

ihh 1.4F 0.003 1.2F 0.617 1.3F 0.399

tgfbr2 1.08F 0.324

dkk3 1.35F 0.812

Table 2. Differential expression of skeletogenic molecules between adult males and females of three anole species. (Note that in only A. carolinensis are these
molecules differentially expressed, being consistently unregulated in males. Significant results are highlighted in italics.)

skeletogenic molecules

A. carolinensis (5m/6f ) A. sagrei (4m/4f ) A. cristatellus (4m/4f )

gene fold change p-value fold change p-value fold change p-value

spp1 2.1M 0.020 1.6M 0.672 1.1M 0.770

col I 2.1M 0.101 1.0M 0.904 1.2F 0.349

col II 2.3M 0.002
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increased rates of facial elongation relative to females. Such

shift in expression of erb following sexual maturity does not

appear to represent a temporal transposition of earlier differen-

tiation mechanisms and represents a novel mechanism of

sexual differentiation among anoles, specifically, and ver-

tebrates more broadly. Our analyses of Anolis skull shape

dimorphism illustrate that although clades may possess ‘hom-

ologous series in variation’ [23,24,37] over macroevolutionary

time scales, approximately 40 Myr in this case, novel develop-

mental strategies will occasionally be recruited to overcome

otherwise conserved evolutionary constraints.
4. Emerging perspectives on the evolution and
development of sexual dimorphism

Studies investigating the developmental bases of morphologi-

cal evolution have significantly expanded in recent decades

[38–40], yet the mechanisms controlling sexually dimorphic

characters and their evolution have not received the same

detailed attention. Extensive research has focused on how the

evolution of body size dimorphism depends on circulating hor-

mone levels [11,14,41], but this type of analysis is insufficient to

explain anatomically mosaic patterns of sexual trait evolution.

Localized changes in body proportion must arise through evol-

utionary modifications to sex- and tissue-specific regulation of

hormone receptors, nuclear regulatory molecules and down-

stream molecules. As many secondary sexual traits represent

some of the most exaggerated and rapidly evolving traits
found in nature, understanding the details of their development

and evolution may provide novel insights into the mechanisms

that regulate the production of phenotypic diversity.

Recent investigations, including this study, have focused on

developmental networks to uncover a diversity of previously

unappreciated cellular and molecular mechanisms that regulate

secondary sexual variation in animals. In many vertebrates,

differences in circulating testosterone levels regulate size

dimorphism [11,14,42]. However, sex-specific oestrogen signal-

ling is also needed to explain variation in the second-to-fourth

digit ratio in mammals (2D : 4D; [43]) and facial length dimorph-

ism in Anolis lizards (this study). Among many insects, sex-

specific levels of juvenile hormone regulate body size dimorph-

ism [44], but cannot alone explain sexually dimorphic traits such

as mandible size in stag beetles [45]. In this latter case, sexual

dimorphism in mandible length results from sex- and tissue-

specific expression of Doublesex isoforms conveying differential

sensitivity to juvenile hormone signalling [46]. Likewise,

sexual dimorphism in horned beetles is also regulated by the

Doublesex locus [47], although differences in horn allometry

among males are regulated by a distinct upstream factor, the

nutrition-sensitive insulin pathway [18,48].

Each of these examples highlights that independent exam-

ination of circulating hormones and signalling molecules

provides only a partial picture of the mechanisms regulating

secondary trait development. Considering that secondary

sexual characters result from the interaction of globally and

locally acting signalling factors, determining how these

developmental networks—from hormone to hormonal
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receptors to signalling and patterning molecules—evolve in

response to sexual selection pressures is one of the most

pressing challenges ahead.
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